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Consideration is given to the problem of asymptotic  reduction to a two-dimensional equation of  an equation 

that is three-dimensional  along the coordinates  and describes the process of  heat propagation in an 

anisotropic material The region of  heat transfer is a layer that is thin along one coordinate. It  is assumed 

that the matrix of  the thermal diffusivities depends on the spatial coordinates. The effective thermal- 

"diffusivity matrix is represented in the constructed equivalent heat conduction equation. 

Introduction.  In the case of heat and mass t ransfer  equations, cases are not infrequent when, because of 

difficulty of analysis,  it is desirable to switch over to a simplified model. This is especially true if averaged (integral) 

characteristics of the process ra ther  than a detailed field of the temperatures and concentrations in a body are a 

mat te r  of interest  to researchers.  In these cases, obtaining simplified equations of the process that are quite exact 

for practical needs is an attractive feature.  It is required  of the simplified models that  they be similar in a sense to 

the initial model and enable us to find correction equations when needed.  

A good example of this simplification is the Tay lo r  model of effective diffusion (heat conduction) [1, 2 ], 

which has gained wide acceptance in describing the t ransfer  of heat and mass in channels,  apparatuses,  etc. For  

the average cross-sectional concentrat ion of a substance,  Taylor proposed an equation with an effective diffusion 

(dispers ion)  coefficient that  was calculated from the  velocity profile in a ch an n e l .Th e  first considerat ion in 

transformation of the problem of [1, 2 ] is the possibility of substantiating it by certain physical and mathematical  

arguments  (computations). This proved to be very at tractive for simplification of a mathematical  description of heat 

and mass t ransfer  processes, owing to which the T a y l o r  method was generalized and was improved in different  

directions (for example, [3-6 ]). In the problem proposed below (as in the Taylor  p r o b i e m [  1-2 ]), direct averaging 

of the initial equations does not lead to a desirable result ,  since terms that cause the averaged problem to be open 

remain in the equation. Therefore ,  the main problem will be substantiation of the averaging and obtaining a closed 

system of equations (equation), error  detection, and  indication of fur ther  steps (if they are necessary) to refine the 

result. 

Formulat ion of the Problem. Let us analyze  the process of propagation of heat in a plane layer of material  

that is anisotropic as far as the t ransfer  of heat is concerned.  More precisely, the region of heat t ransfer  is limited 

by two planes Z -- 0 and Z = H and,  in general,  ex tends  infinitely in the X and Y directions. In fact, we could 

prescribe a closed cylindrical surface with the equat ion S(X,  Y) = 0 that would serve as the boundary of the 

heat - t ransfer  region together with the noted planes and take a s tandard boundary  condition at this boundary .  

However this is of no significance for the subsequent  presentation. The process of heat  propagation in the region 

is described by the equation 

- %v (x,  Y, z )  oxv) ' (1) 

where,  as is often done in tensor  and matrix calculi, summation from unity to three is carried out with respect to 

the double subscript (in this case, kt and v). Here  for convenience we assumed X1 = X, X2 = Y, and X 3 = Z; a~,v 
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(X, Y, Z) is the thermal-diffusivi ty tensor,  which will be assumed to meet  the requirements of nonequil ibrium 

lhermo dynamics  [7-9 ], namely ,  the s y m m e t r y  a~,v = ave, (the Onsager  relat ion) and positive def ini teness:  

a~v~,~v >-- x~,~ ,  (x > 0). The  latter requirement  is associated with the dissipative nature of the process and  the 

production of en t ropy  [7, 8 ]. As the boundary  conditions for Eq. (1) we take the following conditions: 

OT = 0 ,  (2) 
azv ~ v  Z=0;H 

TIx,  r-,+_= < ~ .  (3) 

Boundary condit ion (2) expresses the absence of heat flux in the direction of the external  normal to the boundaries  

Z = 0 and Z = H while condition (3) expresses the boundedness of solutions at large distances from the coordinate  

origin. The  extens ion of the region in the X and Y directions is of no fundamenta l  importance for us, i.e., condition 

(3) is writ ten for concreteness ,  to make the formulation of the problem complete. In it, we also adopt the initial 

condition 

Tic=0 = Tn (X, Y, z ) ,  (4) 

We note  that  problems similar to (1)-(4) can arise when mass- t ransfer  problems and the processes of 

transfer in porous media  are  investigated [9, 15 ]. 

Analysis  of  the Problem.  In this work, simplification of problem (1)-(4) will be the main objective for us. 

The basic supplementary  conditions are (2). In what follows we will indicate complications in the formulat ion of 

problem (1)-(4)  that  do allow for a simplified asymptotic formulation according to the scheme presented.  

Let us in t roduce the operation of averaging of a function F: 

H 1 (s) 
( F ( X ,  Y , T ) ) = ~  f F (X,  Y , Z , T )  d Z .  

0 

It should be noted that in the particular case when a/~z = 0 and azz = azz(X, Y, Z) while the remaining 

components of the tensor  a~v are independent  of Z, averaging Eq. (1) and conditions (3) and (4) in view of boundary  

conditions (2) leads directly to a reduction in the dimensionality of the problem, i.e., we obtain a closed problem 

for the average,  according to relationship (5), temperature. Our interest  is in a more general, nontrivial case. 

However we use the specific properties of the region of integration of Eq. (1) when the scales of the corresponding 

variables differ  in magni tude  for the region distinctly less extended in the Z direction than in the X and Y directions. 

More specifically, we write Eq. (1) and boundary  condition (2) according to the formulas: 

X Y Z a/~ v a. H 
X l = X _  , x Z = y -  , x 3 = z = - -  , A / ~ , , = - - ,  t = T ~ , - - ,  (6) 

L.  L.  H a .  L. L. 

in dimensionless form 

( O T )  I O ( O T )  0 ( OTIt e2 i ) (A . . OTI  2 OT O Az z -~z + e Aiz + Aiz ~zJ j + , (7) 

where now and  in what  follows we will assume that summation from one to two is with respect to the double Latin 

subscript (with respect  to i in the terms for e and with respect to i and j in the term for e2). For  example,  

2 
AijOT/Ox j = ~. AijOT/dx j. If the Greek subscript (as/~ and v in (1)) occurs twice summation is from one to three  

j=l 
with respect to it. We put emphasis on the subscript z to the z coordinate;  we cannot sum with respect to it. 

Boundary  condit ion (2) in the variables of (6) acquires the form 
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A OTI + e A i z ~  = 0 .  (8) 
zz --~-z i z=0;l OXilz=O;1 

T h e  t ime scale in (6) is such that  the equalion of effective heat  conduction is constucted with only two spat ia l  

coordina tes  x and  y. Therefore ,  the formula  for t is quite natural .  Conditions (3) and  (4) retain their  fo rm in the  

d imens ionless  variables of (6) while in the formula for averaging (5) the upper limit in the integral will be  uni ty ,  

and  there fore  the factor 1 / H  is made  unnecessary.  By virtue of the above we will not rewrite formulas (3),  (4),  

and  (5). 

When  heat  propagates  in a l ayer  e << 1, as a rule. Therefore ,  the perturbation method [ 11, 12 ] is a na tu ra l  

method  for  seeking a solution of the problem for Eq. (7) with supplementary  conditions (3), (4), and (8). Thus ,  

we seek  a solution of the noted problem in the form of the expansion 

Z = T O (x, y, z, t) + 6T l (x, y, z, t) + c2T2 (x, y, z, t) + . . . .  (9) 

subs t i tu t ing  which into Eq. (7) and  boundary  condition (8), we obtain the sequence of problems 

0 (Azzc)To/OZ) OTo] 
= 0 ;  ( lO)  Oz = 0,  Azz-~z z=O;1 

O--zO Azz ~ + -~z Aiz-ff-~xi j = Ox i Aiz Oz J ' Azz ~ + Aiz ~ z=O;I = 0 ;  (11) 

O-'-z Azz-~-z } +-~z IAiz ~ 

OT k 
Aij ~ + A i z -  

af ter  t e rms  of the same order  in e are  grouped. 

Ot Ox i - Ox~-i aiz ~z ] ' (12) 

OTk-1 ] 
= 0 ,   =2,3 . . . .  

.---/ ) 
z=0;l 

Each equation of (11) and (12) for the functions T k has  a certain necessary condition for the ex i s tence  of 

a solution. We denote  the sum of all the terms in the r igh t -hand  side of Eq. (12) by the symbol  Ft.  Then ,  ave rag ing  

the equat ion 

0 (Azz OTk/OZ ) 0 (Aiz OTk_l/C)xi) 
+ = F  k Oz Oz 

and  taking into account boundary  condition (12), we obtain 

(Fk)=O, k = 2 , 3  . . . . .  (13) 

In tegra t ion  of Eq. (10) with allowance for the boundary  conditions indicates the independence  of the 

var iable  To on the coordinate z. We denote  T O = G(x, y, t). In such an event, the r igh t -hand  side of Eq. (11) is 

zero and  we can integrate it direct ly  once. Doing this with allowance for boundary  condition (11), dividing the  

result  by  the positive Azz, and  integrat ing with respect to z once again, we arrive at the following re la t ionship  for  

the funct ion TI: 

OG z Aiz o J d z - -  (14) T 1 = T  l ( x , y , t ) - ~  o Azz' 

where  T~I (x, y, t) is a function of the  indicated variables that  remains  to be defined. 
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Here  we consider only  the equation for the principal approximation of expansion (9), for which purpose it 

will suffice to take k = 2 in (13) with allowance for the relationships ob ta ined  for the variables To and T I. 

From relations (13) and (14) we have 

OG 0 ( O~jxj ) 0 ((AizA]z) O~xj ) (15) 
Ot - Ox i (gift - ~x i Zz z , 

where it is taken into account  that  T~t is independent of z. The form of Eq. (15) yields the formula for the tensor  

of the effective thermal diffusivities 

~ l i j ( x , y ) = ( g i ? z z - g i z A j  z ) A z z  . (16) 

It is easily es tabl ished that the elements of the matrix Aq are the minors of the matrix A~,~ divided by the 

component  Azz (here we allow for the symmetry of the matrix A~,0. We note  that  the principal minors of the  matr ix 

Aq, by virtue of the Sylves ter  number  [13, 14], are positive for the matr ix  A~,v (including the e lement  Azz); 
therefore ,  diagonal e lements  of the matrix Aq will be positive. Since the inverse matrix A~- t of a posit ive-definite 

matr ix  is also positive-definite [13, 14 ], taking into account that its components  are the minors of the parent  matrix 
k 

divided by its determinant ,  which is positive, we can easily see that the de te rminan t  of the matrix Aq (16) is positive. 
A 

Thus ,  the properties of symmet ry  and positive definiteness are ex tended  to the matrix Aq although it has four 
A 

components  instead of nine.  This  suggests that the matrix Aq can qualify well as the thermal-diffusivity matrix.  

The  asymptotic analysis  performed shows that a layer of anisotropic material acts as a new anisotropic 

(plane) body when the n u m b e r  of space variables is reduced by unity. 

Determination of  the Initial Condition for Eq. (15). For a complete formulation of the problem, we need to 

state the initial condition for Eq. (15), which will be written in the final form 

OG 0 (~t. OG) (17) 
ot oxi ', o x #  " 

We note  that,  in fact, we constructed an "external" [11, 12] expansion suitable for description of a process with 

ra ther  large times. T h e  absence  of initial condition (4) in the formulat ion of the problem for the functions Tj 
indicates the special (singular) behavior of this expansion. The initial condit ion dropped out because of the large 

scale selected in the dimensionless  scale = l / e  2 in making the time r dimensionless  according to (6). To  describe 

the behavior of a solution with small times, we need to introduce the "contracted" time ~ = t/e 2 and to construct  a 

new expansion [11, 12 ]. T h e  new "internal" 111, 12 ] problem will be wri t ten in the following manner:  

O--~=~z Azz~z +e Aiz + 

OT + ~Aiz ~xi z=0;l Azz ~z z=0;1 

0 OT e2 0 Aq , 
~X i iz ~Z + OX i 

= 0 ,  T]~= 0 = T n (x, 3", z). (18) 

As before we restrict ourselves to the principal approximation of the in ternal  expansion 

T = N 0 (x, y, z, ~) + eT 1 (x, y, z, 4) + . . . .  (19) 

where the over bar denotes  an internal  solution. An equation for the funct ion To of the principal approximat ion is 

obta ined by the simple subst i tut ion of e = 0 into (18). Thus,  we have the problem 

0To 0 { 0To  OTo] - 
W=-~z  (A=z-~z) ' A = ~  = 0 ,  T0]r 0 =  T n ( x , y , z ) .  (20) 

OZ [ z=0;l 

For our  purposes (joining with the solution of external  problem (9)),  it will suffice to determine only the  average 

value of the function TO: (To). To do this, we average Eq. (20). As before we obtain a zero average value of the 

opera tor  in the r ight-hand side. Hence we find 
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m (o o) 
= 0 -~ (To) = const (~) = (Tn) ,  (21) 

here we resor ted  to initial condition (20). Now, employing (21), we use the principle of limit joining [11, 12 ] for 

the terms average  of the principal terms of the external  and  internal  expansions 

= lira (To) = (Tn} = G,, (x, y ) .  (22) lim (To) = lim G (x, y, t) = G I t=0 r 
t--,O l->0 

Thus ,  the function To(x, y, t) at the initial instant  is equal to the average value of the initial function of 

the initial problem.  This  is to be expected from intuitive considerat ions.  So, the asymptot ic  problem of the principal 

approximat ion of the external  solution reduces to Eq. (17), bounda ry  conditions for the var iables  X and Z (3) (it 

is easy to per form a similar  analysis for boundary  conditions that  are different from (3)),  and  the initial condition 

GI t=O = (Tn) = Gn (x, y) . (23) 

One would expect that the external  expansion is of p r ime  interest  for practice because  of the larger char-  

acteristic t ime of a variat ion in the parameters .  The  value of the internal solution reduces to the construction on 

its basis of the expansions  required for joining with the solution of the external  problem. Using the joining procedure 

in the principal  approximat ion of the external  solution we were  able to obtain a closed problem (independent  of 

the character is t ics  of the internal solution). We can a t t empt  to obtain the same result  (if we are  fortunate) in 

subsequent approximat ions .  We note, however, the following interest ing aspect of the internal  problem.  It describes 

a rapid (t = O(e2)) process of equalization of the concentrat ion of a substance along the z coordinate  t ransverse to 

the layer. Thus ,  the dimensionless homogenat ion time (equalization time of the characterist ics of the problem along 

the z coordinate)  in the system is on the order  of e 2. 

Final Comment s .  The  proposed t ransformat ion of the equation of anisotropic heat  conduct ion is generalized 

in a natural  m a n n e r  to the presence of heat  sources inside the layer  and heat  flux through its boundar ies  z = 0 and  

z = 1. It is par t icular ly simple to allow for the heat  sources when the size scales of these sources are  in agreement  

the character is t ic  t ime scale of the problem. More precisely, in the dimensionless variables of (6), the terms that  

describe the heat  sources are on the order  of e 2. In this case,  the term e2O(T, x, y, z), which represents  the 

volumetric heat  source, will enter  the r ight -hand side of Eq. (7) while boundary  conditions (8) will take the form 

'A I - -  = - -  e q 0 ( r , x , Y ) ,  zz Oz + tAiz " z=0 

(A OT O xT/) [ 2 
- -  = - -  e q l  ( r ,  x ,  y )  , zz Oz + eAiz z=l 

where the functions q0(T, x, y) and ql (T, x, y) describe the heat  fluxes at the boundar ies  of the region. It is easy 

to verify that ,  by following the algorithm described,  we will arrive at the following equation of effective thermal  

conductivity: 

oc a ( , i . .oa/  
Ot - Ox i [ 'J Oxj) + (Q (G' x '  y)) + qo (O, x, Y) + ql ( G , x , y )  

with the same  mat r ix  of effective thermal  diffusivity that  was found before. It is clear that the averaged  heat source 

Q will depend  only on the functions G and the coordinates x and  y. It is precisely these a rgumen t s  that remain in 

the function of the heat  source in the given equation. 

Of  def in i te  in teres t  is the r ep resen ta t ion  of a sympto t i ca l l y  averaged  equat ions in some  other  (non-  

Cartesian) or thogonal  coordinates. Here  we give only the corresponding formulas for a l ayer  of Z = 0; Z = H in 

the cylindrical  coordinates  Z, R, and/o .  The  basic equation that  replaces (7) will be writ ten in the form 
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2 0T 0 ( O _ ~ z ) [ - ~ z  ( O T  A~~ Oi-~ ) 0 ( O _ ~ z )  
t Ot = Oz Azz + e A r z ~  + r +-~r  rArz -4- 

+ - ~  ~z ~r  + r Arr -~r + + Arc, ~ Tr  + A~~176 (24) r -ff-~ ~ r -ff'~ " 

Instead of boundary condi t ions  (8) we have the following conditions: 

I EA + e r~ ~ + - -  = 0 .  (25) Azz ~ z=0;l r 0~o z=0;1 

Here  the dimensionless coordinate  r is related to R in the same manner  as x and y are  expressed earlier in terms 

of X and Y (6), i.e., r = R / L .  
Following the scheme  presented earlier, we will bring Eq. (24), in view of (25), to the form 

OG 0 ( ~ 4 0 G  Argo 0_~) 0 (^  OG A~r OG) 
07 - rO-----r r rr ~r  + + Ar~ ~ r r ~ -~r + O~) ' (26) 

where arr = (arr) - (a2rz/azz); Argo = (argo) - (A~zarz/azz); A~o~o = (a~r - (a2z/azz).  As in deriving Eq. (15), use 
was made of some proper t ies  of the matrix At, v, more precisely, its positive defini teness  and the conditions of 

symmet ry  Arz-= Azr , etc. It can easily be seen that the initial condition for Eq. (26) will be (23), where the arguments  

x and y in the function Gn should be replaced by r and ~,. 

N O T A T I O N  

a~,v and A~,v, dimensional  and dimensionless thermal-diffusivity tensors, respectively ~u, v = 1, 2, 3); a . ,  

scale of thermal-diffusivity tensor;  Aij, effective thermal-diffusivity tensor (i, j = 1, 2) ; G, first term of the expansion 

of the temperature in te rms of e; H, layer  thickness; L. ,  scale for the variables X, Y, and  R; T, temperature;  Tj, 
terms of the expansion of the tempera ture  in terms of e (9); Tj, components of the internal expansion of the 

temperature  in terms of the per turbat ion e (19); t, dimensionless time; X~,, Cartesian coordinates ~ = 1, 2, 3); e 

= H / L . ,  perturbation', ~ = t / e  2, internal  time; T, dimensional time; ( ) ,  averaging sign. 

REFERENCES 

1. G. Taylor,  Proc. Roy. Soc., Ser. A, 219, No. 1137, 186-206, London (1953). 

2. G. Taylor,  Proc. Roy. Soc., Ser. A, 223, No. 1155, 446-458, London (1954). 

3. R. Aris, Proc. Roy. Soc., Ser. A, 235, No. 1200, 67-77, London (1956). 

4. V.I .  Maron, Zh. PrikL Mekh. Tekh. Fiz., No. 5, 96-102 (1971). 

5. V.V.  Dil 'man and  A. E. Kronberg,  Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1,81-86 (1984). 

6. A.I .  Moshinskii, Inzh.-Fiz. Zh., 56, No. 6 ,931-936 (1989). 

7. S. De Groot and  P. Mazur,  Nonequilibrium Thermodynamics [Russian translat ion ], Moscow (1964). 

8. I. Diarmat i ,  Nonequil ibrium Thermodynamics.  The Field Theory and Variational Principles [Russ ian  

translation l, Moscow (1974). 

9. A.V. Luikov, Heat and Mass Transfer (handbook) [in Russian l, Moscow (1978). 

10. E.S.  Romm, Structural Models of the Pore Space of Rocks [in Russian ], Leningrad (1985). 

11. J. Cole, Perturbation Methods in Applied Mathematics [Russian translation I, Moscow (1972). 

12. A. Naife, Perturbation Methods IRussian translation 1, Moscow (1976). 

13. I .M.  Gel ' fand,  Lectures on Linear Algebra [in Russian 1, 3rd edition, Moscow (1966). 

14. R. Bellman, Introduction to Matrix Theory [Russian translation 1, Moscow (1976). 

832 


